COMMON PRE-BOARD EXAMINATION SUBJECT: CHEMISTRY (043) CLASS XII-SESSION (2022-2023)

Time allowed:3 hours

Maximum marks: 70

ANSWER KEY

	ANSWER KEY	
QN	ANSWER	MARKS
	SECTION - A	
1	b	1
2	c	1
3	b	1
4	a	1
5	С	1
6	d	1
7	d	1
8	С	1
9	а	1
10	d	1
11	b	1
12	а	1
13	а	1
14	а	1
15	а	1
16	d	1
17	С	1
18	b	1
	SECTION – B L	1
19	$\begin{aligned} & : \log \frac{N_2}{k_1} = \frac{1}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \\ & \frac{k_2}{k_1} = 5, R = 8.314 \text{JK}^{-1} \text{mol}^{-1}, T_1 = 350 \text{K}, T_2 = 400 \text{K} \\ & \log 5 = \frac{E_a}{2.303 \times 8.314} \left[\frac{1}{350} - \frac{1}{400} \right] \\ & 0.69897 = \frac{E_a}{2.303 \times 8.314} \times \left[\frac{400 - 350}{350 \times 400} \right] \\ & E_a = \frac{0.69897 \times 2.303 \times 8.314 \times 350 \times 400}{50} \\ & = 37473.2 \text{J mol}^{-1} = 37.473 \text{kJ mol}^{-1}. \end{aligned}$	1+1
20	(a) On prolonged heating with HI, glucose gives n- hexane. $\begin{array}{c} CH_3 \\ CHO \\ (CHOH)_4 \end{array} \xrightarrow{HI/red P} \begin{array}{c} CH_3 \\ (CH_2)_4 \end{array} + \begin{array}{c} (CH_2)_3 \\ CH_3 \\ CH_3 \end{array}$ $\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array} = \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$ (b) A nucleoside is formed of pyrimidine or purine base connected to C-1 of sugar (ribose or deoxy ribose) by a β linkage.	1+1

25	$\kappa = 1.386 \times 10^{-6} \text{ S cm}^{-1}$	1+1
	$A \circ = \frac{\kappa \times 1000}{\kappa \times 1000} = \frac{\kappa \times 1000}{\kappa \times 1000}$	
	M Solubility	
	Solubility = $\frac{\kappa \times 1000}{\Lambda_m^{\circ}}$	
	$\Lambda_{\rm m}^{\circ}({\rm AgCl}) = \lambda^{\circ} ({\rm Ag^{+}}) + \lambda^{\circ} ({\rm Cl^{-}}) = \frac{1.386 \times 10^{-6} \times 1000}{10000}$	
	= 62.0 + 76.3	
	= $138.3 \text{ S cm}^2 \text{ mol}^{-1}$ = $1.0 \times 10^{-5} \text{ mol L}^{-1}$ = $1.0 \times 10^{-5} \times 143.5 \text{ g L}^{-1}$	
	$= 1.0 \times 10^{-3} \times 143.3 \text{ g L}^{-1}$ $= 1.435 \times 10^{-3} \text{ g L}^{-1}$	
	SECTION – C	
26	(a) Sc ³⁺ is colourless as it does not have unpaired electron and cannot undergo d-d	1+1+1
	transitions, whereas Ti ³⁺ is coloured due to the presence of unpaired electrons and	
	undergo d-d- transitions by absorbing light from the visible region and radiate	
	complementary colours. (b)It is because Cr ²⁺ loses one electron to become Cr ³⁺ which is more stable due to half-	
	filled t _{2g} orbitals, whereas Mn ³⁺ will gain electron to become Mn ²⁺ which is more stable	
	due to half- filled orbitals.	
	(c) It is due to poor shielding effect of 5f electrons in actinoids than 4f electrons in	
	lanthanoids.	
27	(a) 1- Bromopentane, it is primary halide therefore undergoes S _N 2 reaction faster.	1+1+1
	(b) 2-Bromopentane as carbon number 2 is asymmetric	
	(c) 2-Bromo-2-methylbutane, because tertiary alkyl halides on dehydrogenation form most substituted alkene which is more stable.	
28	Н	1+1+1
20	dry ether OMgBr H₂O/H⁺ OH	1.1.1
	(a) $H_{-}C=O + C_2H_5MgBr$ H_2C C_2H_5 H_2C C_2H_5	
	OH CH3	
	Zn/Δ + CH ₃ COCI/cAnhyd.AICI ₃	
	(b)	
	Phenol Benzene Toluene	
	(c) 3CH ₂ =CH ₂ + 2 KMnO ₄ +H ₂ → 3 CH ₂ (OH)-CH ₂ (OH)+ 2MnO ₂ +2 KOH	
	OR	
	он	
	(a) $(CH_3)_2CO \xrightarrow{LiAlH_4} CH_2CH_3$	
	CH ₃ CH-CH ₃	
	propan-2-ol	
	ОН ОСОСН³	
	L COOH	
	(b) (CH ₃ CO) ₂ O + CH ₃ COOH	
	Salicylic acid Aspirin CH₃-ÇH-CH₃	
	H ₃ PO ₄	
	(c) + CH ₃ CH=CH ₂	
	cumene	

29	(a)	1.5+1.5
23		OR
	$CH_{3}COOH \xrightarrow{NH_{3}/\Delta} CH_{3}CONH_{2} \xrightarrow{Br_{3}/KOH(aq)} CH_{3}NH_{2} \xrightarrow{CHcl;\atop alc.\ KOH} CH_{3}NC$ (B) (C)	1+1+1
	(b)	
	NO ₂ NH ₂	
	$C_6H_5N_2^*BF_4 \xrightarrow{NaNO_2/Cu} \longrightarrow \bigcirc$	
	(A) (B)	
	HŅ	
	— CH,COCI/ pyridine	
	(0)	
	OR (C)	
	(a) Gabriel phthalimide synthesis is not preferred for preparing aryl amines because aryl	
	halides do not undergo nucleophilic substitution reaction with phthalimide.	
	(b) $C_6H_5NH_2 < (C_2H_5)_2NH < C_2H_5NH_2$	
	(c) Add an alcoholic solution of KOH and CHCl ₃ to the compounds. Aniline gives the foul	
	smell of isocyanide whereas N-methyl aniline does not give a foul smell.	
	$C_6H_5NH_2 + CHCl_3 + KOH \longrightarrow C_6H_5NC + 3KCl + 3H_2O$	
	Aniline (alc) Aniline isocyanide	
	(foul smell)	
	$C_6H_5NHCH_3 + CHCl_3 + KOH \longrightarrow No reaction$	
	N-methylaniline (alc)	
30	Solution	1+1+1
	(a) No. of moles of $NaCl=rac{5.85}{58.5}=0.1$ mol	
	Apply the equation for permetic procedure	
	$\pi = rac{n_2 RT}{V}$	
	Here, $n_2=0.1 mol, R=0.082~~{f L}~{ m atm}~{f K}^{-1} mol^{-1}$	
	Substituting the values in the above equation, we get	
	$\pi = 0.1 imes 0.082$ atm $= 2.46$ atm Thus calculated osmotic pressure = 2.46 atm	
	Observed osmotic pressure = 4.75 atm	
	$ ext{vant Hoff factor, } i = rac{ ext{Observed osmotic pressure}}{ ext{Calculated osmotic pressure}}$	
	or $i=rac{4.75}{2.46}$	
	$NaCl ightarrow Na^+ + Cl^-$	
	If x is the degree of dissociation, then, total number of moles will be	
	1 - x + x + x = 1 + x	
	or $i=rac{1+x}{1}$	
	From (1) and (2), we have	
	$1+x=rac{4.75}{2.46}$ or x = 0.93%	
	Degree of dissociation = 0.93 or Percentage dissociation = 93%	
31	(a) Maximum boiling azeotrope is formed by negative deviation from Raoult's law.	1+1+2
	(b) As rectified spirit (approx. 95% by volume of ethanol) is an azeotrope so pure ethanol	
	cannot be obtained by it even by fractional distillation.	
	(c) The bonds between chloroform molecules and molecules of acetone are dipole -dipole	
	interactions but on mixing, the chloroform and acetone molecules, they start forming	
	hydrogen bonds which are stronger bonds resulting in the release of energy. This gives rise	
	to an increase in temperature. OR	
	The solution will show negative deviation from Raoult's law	
22	Temperature will rise (a) Chains	1.1.2
32	(a) Glycine (b) Valine Jourine	1+1+2
	(b) Valine, leucine	

		(b) (f) SOCI CH ₂ CI CH ₂ CN CH ₂ COOH OH OH	
		(II) CH_3 — C — CH_3 — H_2 / H_3 — CH_3 —	
		(iii) O +CH ₃ CH ₃ CH ₃ Actiophenone Actiophenone W-Nitroacetophenone	
l l			3+:
	(a)	$E_{\text{cell}}^{\text{o}} = E_{\text{Ca}^{2+}/\text{Ca}}^{\text{o}} - E_{\text{Au}^{3+}/\text{Au}}^{\text{o}}$	OF 1+
		= (-2.87 V) - (1.50 V) = -4.37 V	
		$\Delta_r G_{\text{cell}}^{\text{o}} = -6 \times 96500 \times (-4.37 \text{ V})$	
		= +2530.230 kJ/mol	
		Since $\Delta_r G^0$ is positive, therefore, reaction is non-spontaneous.	
	a	Au ³⁺ /Au half cell will be an oxidising agent while Ca ²⁺ /Ca half cell will be a reducing agent.	
	(D)	$E_{\text{cell}}^{\text{o}}$ for reaction of tarnished silver ware with aluminium pan is $(-0.71 \text{ V}) - (-1.66 \text{ V})$ i.e., $+0.95 \text{ V}$	
		Tarnished silver ware, therefore, can be cleaned by placing it in an aluminium pan as E_{cell}° is	
		Taillished shiver ware, therefore, can be created by placing it in an aluminum pan as F- it b	
		positive.	
		positive.	
		positive.	
0)R	positive.	
o	DR	(b) Solution: (i) The electrode reactions and cell reactions are:	
O)R	(b) Solution: (i) The electrode reactions and cell reactions are: $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$ (At anode)	
0	DR	(b) Solution: (i) The electrode reactions and cell reactions are: $ \begin{array}{c} \text{Mg }(s) \longrightarrow & \text{Mg}^{2+}(aq) + 2e^- & \text{(At anode)} \\ \text{Cu}^{2+}(aq) + 2e^- \longrightarrow & \text{Cu}(s) & \text{(At cathode)} \end{array} $	
O	DR	(b) Solution: (i) The electrode reactions and cell reactions are: $\begin{array}{c} Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-} & \text{(At anode)} \\ Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) & \text{(At cathode)} \\ \hline Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s) & \text{(Overall cell reaction)} \end{array}$	
O	DR	(b) Solution: (i) The electrode reactions and cell reactions are: $ \begin{array}{c} \text{Mg }(s) \longrightarrow & \text{Mg}^{2+}(aq) + 2e^- & \text{(At anode)} \\ \text{Cu}^{2+}(aq) + 2e^- \longrightarrow & \text{Cu}(s) & \text{(At cathode)} \end{array} $	
0	DR	(b) Solution: (i) The electrode reactions and cell reactions are: $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$ (At anode) $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ (At cathode) $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$ (Overall cell reaction) Since the reaction involves 2 moles of electrons and therefore,	
0	DR	positive. Solution: (i) The electrode reactions and cell reactions are: $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$ (At anode) $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ (At cathode) $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$ (Overall cell reaction) Since the reaction involves 2 moles of electrons and therefore, $\pi = 2$ and the Nernst equation for the cell at 298 K is:	
0	DR	(b) Solution: (i) The electrode reactions and cell reactions are: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
0	DR	positive. (b) Solution: (i) The electrode reactions and cell reactions are: $Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-} \text{(At anode)}$ $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \text{(At cathode)}$ $Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s) \text{ (Overall cell reaction)}$ Since the reaction involves 2 moles of electrons and therefore, $\pi = 2 \text{ and the Nernst equation for the cell at 298 K is:}$ or $E_{cell} = E^{\circ}_{cell} - \frac{0.059}{2} \log \frac{[Mg^{2+}(aq)]}{[Cu^{2+}(aq)]} \qquad(i)$ $E^{\circ}_{cell} = E^{\circ}(Cu^{2+} Cu) - E^{\circ}(Mg^{2+} Mg)$ $E^{\circ}(Cu^{2+} Cu) = 0.34 \text{ V}, E^{\circ}(Mg^{2+} Mg) = -2.37 \text{ V}$	
0	OR.	positive. Solution: (i) The electrode reactions and cell reactions are: $ \begin{array}{c} Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^- & (\text{At anode}) \\ Cu^{2+}(aq) + 2e^- \longrightarrow Cu(s) & (\text{At cathode}) \\ \hline Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s) & (\text{Overall cell reaction}) \\ \text{Since the reaction involves 2 moles of electrons and therefore,} \\ \pi = 2 \text{ and the Nernst equation for the cell at 298 K is:} \\ \text{or} \qquad E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} \log \frac{[Mg^{2+}(aq)]}{[Cu^{2+}(aq)]} \qquad(i) \\ E_{cell}^{\circ} = E^{\circ}(Cu^{2+} \mid Cu) - E^{\circ}(Mg^{2+} \mid Mg) \\ E^{\circ}(Cu^{2+} \mid Cu) = 0.34 \text{ V, } E^{\circ}(Mg^{2+} \mid Mg) = -2.37 \text{ V} \\ \therefore \qquad E_{cell}^{\circ} = 0.34 - (-2.37) = 2.71 \text{ V} \end{array}$	

(a) Molar conductivity of an electrolytic solution is the conductance of the volume of the solution containing a unit mole of electrolyte that is placed between two electrodes of unit area of cross- section or at a distance of one centimeter apart.

- (i) d^2sp^3 , octahedral
- (ii) paramagnetic
- (iii) Two geometrical isomers
- (iv) Yes, there may be optical isomer also due to presence of polydentate ligand.

(v) Dichlorido bis-(ethane 1, 2-diamine) Iron (III), Oxidation number of Fe +3(III).